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We introduce a kinetic irreversibleXY model and investigate its dynamic critical behavior through short-
time Monte Carlo simulations on square lattices with periodic boundary conditions, starting from an ordered
state. We find evidence that this system exhibits a Kosterlitz-Thouless-like phase for low values of the noise
parameter. We present results for the correlation function exponenth for several noise values. We also find that
the dynamic critical exponentz is in agreement with the value expected for local update Monte Carlo rules.
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I. INTRODUCTION

An important aspect in the study of statistical model sys-
tems is the role of symmetry. It is well known that equilib-
rium statistical models are in the same universality class
when they share identical symmetries.

For far-from-equilibrium systems, results of a number of
numerical simulations support the conjecture that models
with the same symmetries and defined on the same lattice are
also in the same universality classf1,2g. Most of these stud-
ies have been done on models of discrete symmetries—viz.,
on kinetic Isingf3–7g and Potts modelsf8–12g evolving un-
der stochastic reversible dynamics. Models with an infinite
number of states were analyzed as wellf13g.

An interesting class of nonequilibrium models consists of
systems which evolve in time according to a dynamics such
that in the stationary state the condition of detailed balance is
not satisfied—that is, microscopic irreversible modelsf14g.

The simplest example of an irreversible system that pre-
sents a nontrivial behavior is provided by the two-state
majority-vote modelf15g. In this model, each dynamical
variables on a lattice site takes the state of the majority of
their neighbors with probability 1−q and the opposite state
with probabilityq. Therefore, the time evolution is governed
by the flip rate

wi =
1

2H1 − s1 − 2qdsiSSo
d

z

si+dDJ , s1d

wheresi = ±1, Ssxd=sgnsxd for xÞ0, Ss0d=0, and the sum-
mation runs over thez neighbors of the sitei.

Numerical simulations of this model showed that it pre-
sents a dynamical phase transition from an ordered stationary
state to a disordered one at a critical value of noise parameter
q, which is in the same universality class as the equilibrium
Ising modelf15g. Therefore, microscopic reversible and irre-
versible models seem to be in the same universality classf2g,
at least when their dynamic variables have a finite number of
states.

In this work, we introduce a generalization of the
majority-vote model in which the dynamical variables can
have continuous symmetry—i.e., aninfinite number of states.

We investigate whether the system exhibits a phase tran-
sition at a finite value of the noise parameter and, if it is the
case, whether the conjecture mentioned above could include
models with continuous symmetries.

Here we consider the case where the dynamic variables

are plane rotatorsSW i =sSx,i ,Sy,id residing on the sites of square

lattices anduSW iu=1. Under a reversible dynamics this system
corresponds to a bidimensionalXY model in which an or-
dered phase is not possible. Nevertheless, this model under-
goes a nonusual phase transition, due to unbinding of de-
fects, known as the Kosterlitz-ThoulesssKTd phase
transitionf16g. In the low-temperature phase the Os2d sym-
metry is preserved and the system remains critical in the
sense that the spatial correlation length is infinity.

The equilibriumXY model has important physical appli-
cations, apart from the obvious one toXY magnets. For ex-
ample, it describes the critical properties of the superfluid
helium and it is also related to some models of the roughen-
ing transition of crystalline surfaces.

In the context of reversible dynamics this model has at-
tracted much attention and its equilibriumf17–20g as well as
out-of-equilibrium f13,21–24g properties have been investi-
gated by a number of techniques.

In this paper we are going to investigate, through short-
time Monte Carlo simulations, what features of the behavior
of the XY model are preserved when it evolves according to
a microscopic irreversibledynamics. In Sec. II we introduce
the kineticXY model and our simulational procedure. In Sec.
III we present the results of the simulations along with a
finite-size scaling analysis of the temporal behavior of the
relevant observables. We conclude in Sec. IV with our final
remarks.

II. KINETIC MODEL AND SIMULATION

In order to introduce a microscopic irreversible dynamics
for continuous degrees of freedom closely related to that of
Eq. s1d we first need a generalization of the spin-flip opera-
tion si →−si as in the Ising model. That has been done by
Wolf in the context of a cluster Monte Carlo dynamicsf25g.
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It consists in the reflection of the spin with respect to the
plane orthogonal to an arbitrary direction.

For an Os2d symmetry the system evolves according to
the following rules. Each time step, a random directionr̂ is
selected and we scan the whole lattice. For each site we

projectSW i and its neighbor rotators ontor̂. The component of

SW i in the r̂ direction is flipped with probability

wi =
1

2H1 − s1 − 2qdSsSW i · r̂dSSo
d

z

SW i+d · r̂DJ . s2d

We might visit the lattice sites sequentially or pick them up
at random. As in our test runs we did not observe any differ-
ence between both procedure, we opt to walk sequentially
through the lattice. As usual, a Monte Carlo time stepsMCSd
corresponds to a sweep of the whole lattice. According to Eq.
s2d one sees that forq=1/2 every spin rotates with probabil-
ity 1/2, whereas forq=0 the probability of the component of
a spin ending up pointing contrary to its neighborhood van-
ish. So we might expect some kind of cooperative behavior
for sufficiently low values of the noise parameterq.

It has been observed in a number of Monte Carlo simula-
tions that the time evolution of several observables shows
scaling behavior even for short time. This was analytically
predicted only for dynamic evolution starting from a disor-
dered statef26g. Nevertheless, short-time dynamical scaling
can also be found starting from an ordered state. This has
provided an efficient method to determine the conventional
critical exponents. In the next section we are going to ex-
plore this to investigate the behavior of the kinetic model
introduced here.

Therefore, let us introduce some useful quantities for our
posterior analysis. In this paper we only consider the dy-
namic relaxation of the two-dimensional kineticXY model
from an ordered state. For this purpose we take the initial

state to beSW i =s1,0d for all spins. This means that thex
component of the magnetization,

mxstd =
1

L2o
i

Sx,i , s3d

at t=0 is 1, whereL denotes the lattice size. Then the system
evolves according to the above dynamics for some valueq of
the noise. Due to the absence of conventional long-range
order for two-dimensional systems with continuous symme-
try, we expectmxstd to go to zero for large enought for any
value of q. Nevertheless, if there exists a KT-like phase at
low noises, the magnetization should show a short-time
power-law behavior for noises near and below some critical
qc.

Other observables also provide useful information about
the critical behavior of the system. In particular, we measure
the second moment of the magnetization,

x0std =
1

L2So
i

Sx,iD2
, s4d

and the Fourier transform of the equal-time two-point corre-
lation function,

xkstd =
1

L2o
i,r

Sx,iSx,i+r expsikrd, s5d

with k=2p /L.
The last two equations allow us to introduce a time-

dependent correlation length through

jstd =
1

k
ÎSx0

xk
− 1D . s6d

The equilibriumXY model has an exponential singularity;
that is, the correlation length diverges exponentially. This
behavior contrasts with that of a second-order transition,
where the correlation length diverges with a power law. Also
the spatial correlation function decays algebraically to zero.
Therefore, assuming that the correlation function decays as

Gsrd ,
1

r−h exps− r/jsd, s7d

wherejs is the spatial correlation length, we obtain

xk , js
2−h. s8d

And the short-time dependence of the quantities of interest
comes from the relationt,js

z, wherez is the so-called dy-
namical critical exponent. For instance, Eq.s8d implies

xkstd , ts2−hd/z. s9d

In addition,

mxstd , t−h/2z s10d

and

jstd , t−1/z. s11d

In the next section we are going to show these scaling laws
are satisfied by the kineticXY model introduced here.

III. RESULTS AND DISCUSSION

We perform Monte Carlo simulation in a kinetic two-
dimensionalXY model introduced in the previous section,
restricting ourselves only to the relaxation from an ordered
initial state. We consider full periodic square lattices of linear
sizesL=16, 32, 64, and 256. Most of our results will be
presented for a 64364 lattice. The system is prepared in an
initial state and then released to the dynamic evolution for
some value of the noiseq. All calculated quantities are aver-
aged over several realizations—that is, over different time
trajectories.

First we consider the relaxation of thex component of the
magnetization for rather high noises. Figure 1 shows the
magnetization as a function of time for two values of the
noiseq andL=16, 32, and 64. We performed 1000 samples;
i.e., we averaged over 1000 time trajectories, forq=0.08
sopen symbolsd andq=0.14ssolid symbolsd and each lattice
size. From those data shown in Fig. 1 we see that the mag-
netization measured for both values ofq decays exponen-
tially with a characteristic timet depending strongly onq.
Notice also the weak dependence with the lattice size for
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these high values of the noise parameter. Assuming that
mxstd,exps−t /td, we estimatetsq=0.14d=15s1d MCS and
tsq=0.08d=246s1d MCS from a linear fitting to the data of
Fig. 1. Whereas the exponential decaying is a signal that the
system is not critical at all, the extraordinary increasing of
the relaxation time when the noise is lowered fromq=0.14
to q=0.08 might indicate we are approaching criticality.

In Fig. 2 we plot the magnetization as a function of time
for a 64364 lattice in a double-logarithmic scale and for
noises 0.025, 0.03, 0.035, 0.04, 0.045, and 0.048. For each
noise we performed 8 blocks of 53103 samples 400 MCS
long. Each block yields an estimate formxstd at a given time
t, and from this we obtain our final estimate and estimate of
its statistical error following standard procedures. We pro-
ceed in the same way to calculate all other quantities of
interest and their respective statistical errors. The largest sta-
tistical errors turned out to be less than 0.5%. Therefore, the
error bars are too small and they are left out in the figures for
clarity. From Fig. 2sad we see clearly that at early times the
curves do not display power-law behavior. However, fort
greater than amicroscopictime scale, which depends weakly
on q, all curves exhibit power-law behavior as shown in Fig.
2sbd. In fact, visual inspection of these data shows that the
magnetization decays as a power law for values of the noise
qø0.048 at least for intermediary times. This behavior
strongly suggests that the system remains critical all the way
down toq=0 and it is similar to that of the equilibriumXY
model with the noise being analogous to the temperature.
From Eq. s10d one sees that the slope of each curve dis-
played in Fig. 2sbd yields the critical exponenth /2z at that
particular noise. However, finite-size effects take place at
long times and the behavior cross over to an exponential
relaxation towards a steady state. Therefore, strictly speaking
the power law is only obeyed in some subinterval of the time
evolution. In order to estimate the exponenth /2z we fit the
data according to a straight line witht in the interval
ftinf ,tsupg, wheretinf andtsup are inferior and superior cutoffs,

respectively. We selected the cutoffs guided by thex square
per degree of freedom as the best fitting criterion. The use of
different time intervals yields an estimate for the systematic
errors involved in our analysis. Moreover, we perform the
fitting of the data directly to a power law according to Eq.
s10d—i.e., giving equal weight to the data in both the short-
and long-time regimes. Both procedures yield consistent re-
sults, and we take the mean as our final estimates for the
exponents. Atq=0.048 the best fitting was achieved in the
time intervalf100,300g and we estimateh /2z=0.059 39s2d.
The quoted error is the sum of statistical and systematic er-
ror. We proceed in the same way to calculateh /2z for the
other noises, and we summarize the results in Table I along
with the value of others relevant exponents as calculated be-
low. Results from simulations carried out on a 2563256
lattice agree with those reported in Table I. Therefore, finite-
size effects can be ignored within the statistical errors.

We turn now to the calculation of the other exponents. In
Fig. 3 we plot the Fourier transform of the equal-time two-
point correlation functionxk as a function oft in a double-

FIG. 1. Thex component of the magnetization for high noises
starting from the ordered state in a lin-log scale. The lines are linear
fitting to the data from which we estimate the relaxation time,t.
Different symbols correspond to distinct lattice sizes.t increases
from about 16 times when the noise is lowered fromq=0.14 toq
=0.08, which might indicate the system is approaching criticality.

FIG. 2. Thex component of the magnetization for a 64364
lattice in a double-logarithmic scale. The starting state is the or-
dered one. Insad t belongs tof1,400g and insbd only the long-time
regime is shown. From above the noises are 0.025, 0.03, 0.035,
0.04, 0.045, and 0.048. The slope of each curve yieldsh /2z at each
q.
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logarithmic scale for the same noises and lattice size as in
Fig. 2. Again, visualization of the curves in this figure shows
that Eq. s9d is satisfied. Therefore, by fitting the data to
straight lines we estimate the exponents2−hd /z for eachq.
Also we double checked the results by fitting the data di-
rectly to a power-law according to Eq.s9d. It is worth notic-
ing that different quantities display power-law behavior in
distinct time intervals, so we carried out a careful analysis to
estimate the systematic error which comes from using differ-
ent time intervals to fit the data. The calculated values for the
s2−hd /z exponent are displayed in the third column of Table
I.

Having independent estimates forh /2z and s2−hd /z we
can calculate the dynamical critical exponentz and the asso-
ciated critical exponent of the correlation functionh. An-
other way of getting estimates forz is through Eq.s11d. For
this purpose, we plot the time-dependent correlation length
as a function of time in Fig. 4 for the same simulational
parameters as in the previous two figures. Again, we see that
after a certain period of timej displays power-law behavior
and the slope of each curve yields an estimate for 1/z. Both
procedures yield compatible results. In the fourth column of
Table I we present our final estimates for the dynamical criti-
cal exponentz. We observe that within our quoted error bars
z does not depend onq.

Finally, we complete Table I listing in the last column the
correlation function exponenth calculated fromz andh /2z.

In Table I, we summarize all the values of the critical
exponents discussed above. First, we notice that the correla-
tion function exponenth shows a strong dependence with the
noise q, with a rather linear trend towards 0.25 whenq
→qc from below. This behavior is qualitatively similar to
that observed in the equilibriumXY model. A quantitative
comparison is not possible for we did not calculate the exact
value of qc. The critical dynamic exponentz is estimated
through a weighted average of the data shown in the fourth
column of Table I and turns out to bez=2.136s6d, in agree-
ment with z=2.16s2d obtained for theXY model evolving
under reversible dynamicsf27g. Our estimate forz is also
compatible with those of two-dimensional systems with a
second-order transition such as the Ising or the three-state
Potts model and with a KT-like transition such as the six-
state clock modelf13g. On the other hand, this estimate is
slightly higher thanz<2 recently obtained in the context of
reversible dynamicsf24g.

IV. CONCLUSIONS

In conclusion, we introduced a kinetic irreversibleXY
model and investigated its behavior through short-time

TABLE I. The slope of the curves ofmxstd, xkstd, the dynamic critical exponentz, and the correlation function exponenth. The exponent
z was obtained through the reciprocal of the slope of the curve ofjstd and agrees with that calculated using the measured values ofh /2z and
s2−hd /z. The exponenth comes fromh /2z andz.

q h /2z s2−hd /z z h

0.025 0.0252s6d 0.92s3d 2.1s1d 0.106s5d
0.030 0.0310s3d 0.87s2d 2.14s18d 0.133s3d
0.035 0.0382s3d 0.85s4d 2.16s20d 0.168s2d
0.040 0.0446s1d 0.83s2d 2.17s9d 0.194s2d
0.045 0.0537s6d 0.830s3d 2.133s7d 0.229s3d
0.048 0.05939s2d 0.814s4d 2.140s9d 0.254s2d

FIG. 3. The Fourier transform of the equal-time two-point cor-
relation functionxk as a function of time in a double-logarithmic
scale for a 64364 lattice. Noises and line types are the same as in
Fig. 2. The slope of each curve yieldss2−hd /z at eachq.

FIG. 4. The time-dependent correlation lengthj versust in a
double-logarithmic scale. Noises and line types are the same as in
Fig. 2. After a certain period of time the curves are well fitted by
straight lines whose slopes yield 1/z.
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Monte Carlo simulations in square lattices. We focused only
on the relaxation from an ordered state. The nonequilibrium
dynamic process is closely related to that of the majority-
vote model with a noise in which the dynamic variables have
a finite number of states. The results show that there exists a
low-noise KT-like phase where the measured correlation
function exponenth depends on the noise and the system is
critical in the sense that the correlation length is infinity.
Although in this paper we did not attempt to obtain the criti-
cal noise where the KT phase begins, we did findh
=0.254s2d for a noiseq=0.048 which is surprisingly close to
the value 0.25 predicted by the Kosterlitz-Thouless theory at
the onset of the KT phase in the context of the equilibrium
XY model.

We obtained rather accurate value of the dynamic critical
exponentz which turned out to be very close to 2, in agree-
ment with what should be expected for local Monte Carlo
update rules.

It is worth mentioning that we ignored any possible cor-
rections to scaling throughout this paper. Nevertheless, in a
recent work on dynamicXY models evolving under a revers-

ible dynamics Zheng and co-workers have observed power-
law corrections to scaling for the relaxation from an ordered
statef24g. Therefore, one has to consider with some caution
the systematic errors reported in the present work since they
do not take into account such effects.

Finally, we notice that the irreversible dynamic system
investigated in this work presents a critical behavior very
close to the corresponding equilibrium one; i.e., they seem to
be in the same universality class.
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